
Sign in with Astropay
Integration Guide

Version 1.0

Version History 1

Introduction 2

Authorization Flow description 3
1. Sign in with Astropay (SWA) button 3
2. Authorization Request 3
3. Sign in with Astropay on Merchant 5

3.1 Sign in handler on merchant service 5
3.1. Get Access Token and complete Authentication. 5

4. Get user profile 7

Environments 9

Authorization Scopes 9

References and Useful Links 9

Version History

Version Date Description

1.0 18/03/2021 Initial version with complete Authentication code flow.



Introduction
Sign in with Astropay (SWA) is a service by which Merchants can authenticate users on their
own services using their previously created Astropay accounts, thus eliminating the need of
signing them up first, boosting conversion and improving overall security and compliance.

To that end, Astropay makes available an Identity Provider that is Fully compliant with OpenID
Connect 1.0 (OIDC), which is the current standard in federated authentication, is based on solid
and proven standards such as oAuth 2.0 and JWT tokens and is used by the most popular
identity services such as Google and Facebook. Therefore, integrating with Astropay for Sign in
is just like integrating with any OIDC compliant provider, and all libraries and plugins built to that
end should work without any friction.

We strongly recommend using previously built and tested client libraries for integration with an
OIDC provider, since this reduces greatly the integration effort. The OpenID Foundation
provides a list of certified and uncertified libraries you can find in
https://openid.net/developers/libraries/, but any working OIDC client library should work.

For more information on OIDC protocol, please visit https://openid.net/connect/

For integrating with SWA, merchants need to be configured on Astropay platform, and special
credentials need to be used to ensure security. To start the integration process, merchants have
to get in touch with their account manager or integration@astropay.com and ask for being
registered for SWA integration, upon which they will receive client id and client secret, needed to
integrate as will be seen below.

https://openid.net/developers/libraries/
https://openid.net/connect/
mailto:integration@astropay.com


Authorization Flow description
OpenID Connect supports different mechanisms for authentication, called flows. Sign in with
Astropay (SWA) supports the Authentication (or Basic) Flow, since it’s the simple flow for
secure sign in, and therefore is the flow described in the below diagram.

The Merchant (Relying party in OIDC terminology) must implement the following:

1. Sign in with Astropay (SWA) button
Side by side with regular login, merchant must present user with the button for triggering SWA
authentication. Upon clicking, merchant must craft an authorization request and redirect the
user to that endpoint, where his login and authorization will be handled by astropay. Since
authorization request is done over GET method, redirection may be done with a standard HTTP
redirection (see https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections), via HTML or
even JS.

2. Authorization Request
Note: baseUrl depends on the environment being used for authentication. Below you may find a
table with proper values with each environment.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections


Authorization endpoint on Astropay has the following signature and parameters, and it is
consumed via GET method since it’s the user on the browser who triggers it.

GET ${baseUrl}/cas/oidc/authorize

Parameter Description Mandatory

client_id Identifies the client and must match the value preregistered in
Astropay. It can be requested to integration support.

YES

redirect_uri Callback location where the authorization code should be sent
after user logs in on Astropay, therefore, it’s the endpoint that is
going to be designed to actually authenticate the user, as it will be
explained below. It must match the uri previously registered on
Astropay. Bear in mind that the URI must be URL encoded since
it’s treated as a parameter.

YES

scope Scope of user attributes and actions for which the merchant is
requesting access. Current version only supports the value
”openid+user.profile.read”. Full scope listing can be found
in below section.

YES

response_type Flow type. Only code is supported in current version. YES

nonce Special parameter to prevent replay attacks. This same value will
be present in the id token.

YES

state A value to be returned in the token. The client application can use
it to remember the state of its interaction with the end user at the
time of the authentication call.

YES

The following example is a redirect URL crafted for the following values:
- CLIENT_ID as placeholder for the actual client id value.
- NONCE and STATE as placeholders for generated values that should be used.
- redirect_uri to handle login later: https://merchant.com/signIn/astropay
- scope and response_type with default values openid+user.profile.read

and code respectively

https://idp-stg.astropay.com/cas/oidc/authorize?response_type=code&cl
ient_id=CLIENT_ID&scope=openid+user.profile.read&redirect_uri=https%3
A%2F%2Fmerchant.com%2FsignIn%2Fastropay&nonce=NONCE&state=STATE

When user goes to that URL, Astropay sign in will answer and get the user through the sign in
process with his account configuration. Also, consent from the user to share his basic
information with the merchant will be collected.

https://merchant.com/signIn/astropay


3. Sign in with Astropay on Merchant

3.1 Sign in handler on merchant service
After successful sign in in Astropay, user will be redirected to the address previously specified in
request_uri with the following parameters, where a proper sign in handler must be
implemented by the merchant.

Parameter Description Mandatory

code The authorization code needed to complete authentication. YES

nonce Same value provided on authorization request YES

state Same value provided on authorization request YES

Following the previous example, after successful authentication merchant will receive a GET
request as follows:

GET
https://merchant.com/signIn/astropay?code=CODE&nonce=NONCE&state=STAT
E

This means the authentication was successful and is identified with the CODE. Also, the STATE
value is the same that was previously used, and therefore it can be used to identify that this
request comes from the same session initiated seconds ago, to tie the auth to an existing
previous session if any, and to prevent replay attacks should anyone intercepts the CODE.

3.1. Get Access Token and complete Authentication.
On the sign in endpoint that receives the code, Merchant must take the value received (CODE)
and use it to resolve the access token on the proper endpoint on Astropay:

POST ${baseURL}/cas/oidc/accessToken

Parameter Description Mandatory

grant_type Grant type for the flow. Only authorization_code is supported in
current version.

YES

code The access code received that identifies the authentication
request.

YES

redirect_uri Same value provided on authorization request YES



client_id Client id for merchant identification YES

client_secret Client secret for merchant authentication YES

Note that this is a direct B2B request between the merchant backend and Astropay’s backend,
and that it carries the additional client_secret, which must be present in order to authenticate the
request is in behalf of the merchant and not a forged one made by someone who got an
authorization code somewhere. The response carries the access token and id token and allows
to complete the authentication.

Successful response is HTTP code 200, wrong client id or secret yields a 401 unauthorized and
any other error yields a 400 Invalid request. Also, if successful, contents are encoded in JSON
format.

Property Description Type

access_token Access token that identifies the session on SWA. It can be used to
authenticate subsequent requests to other endpoints

String

token_type Type of the token to be used later. Always contains bearer. bearer

expires_in Token duration in seconds int

scope Allowed scope for the access token String

id_token JWT token with user information JWT

Response contains access_token that can be used for subsequent request authentication
and therefore must be tied to the local user session on the merchant, since its scope is for this
single user and its validity is expressed by the expires_in value.

id_token contains a JWT token with user data. It can be parsed with any JWT library, and it
contains basic user data such as phone number, country, identity level and other relevant
information to know the customer.

Example request:
This example is simplified, any assigned cookies should be included to avoid being routed
wrongly by load balances or blocked by security components.

POST /cas/oidc/accessToken HTTP/1.1
Host: idp-stg.astropay.com
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=CODE&redirect_uri=https://merchant
.com/signIn/astropay&client_id=CLIENT_ID&client_secret=CLIENT_SECRET



Example response:
{

"access_token": "AT-5--KjKvRPuTyQCuejqPMbnNOayW1DnxWtl",

"id_token":

"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJUR1QtOS1aVjNtcC05aUxiSjBlck14elY0T3BP

cWFWS0JRbHFlVHVxUkZxWVRoZTJnM3pncVk4QXFicGJVY0R0S2xLNjlVZjR3LXMtaWRwLTAxIiwic2lkIjoiN2

ViMzc0MTk4MmQ0MWNjNjJjODBmODUxOTU3YjAyODExMjBhMWU0OSIsImlzcyI6Imh0dHBzOi8vaWRwLXN0Zy5h

c3Ryb3BheS5jb20vY2FzL29pZGMiLCJhdWQiOiJjbGllbnQiLCJleHAiOjE2MTYxMjIwMDUsImlhdCI6MTYxNj

A5MzIwNSwibmJmIjoxNjE2MDkyOTA1LCJzdWIiOiI1OTggOTgyODcxMjYiLCJjbGllbnRfaWQiOiJjbGllbnQi

LCJhdXRoX3RpbWUiOjE2MTYwOTMyMDUsInN0YXRlIjoiZjk1OWQwZTBmMDMyIiwibm9uY2UiOiIxM2U0MDEyMD

lhN2FmIiwiYXRfaGFzaCI6IkRSOHIxaGRtMmZUVjdlcTNibk5NdmciLCJjYXRlZ29yeSI6dHJ1ZSwiY291bnRy

eSI6IlVZIiwiaWRlbnRpdHlfc3RhdHVzIjoiTk9ORSIsIm1vYmlsZV9udW1iZXIiOiI1OTggOTgyODcxMjYiLC

JwcmVmZXJyZWRfdXNlcm5hbWUiOiI1OTggOTgyODcxMjYifQ.f8aW7sQTywMiauwkAYmshxxFlCK7ihlzJdZgw

-_-Om5EvflZiFJHHBlmAEPBoea8W87E582D9mRPzxfkP7bE_XFLDedMbbl1t7gGNBoEX2_DFef8s58FseX9jT4

RlcyV7awP-FviNja2MFlT2zRaeJeKWuGI6vOdq7lZdts8MHRnhOwmZw3WXN4u8iAo3HSZgjgRVWrn0oWZF9YQC

_2_SCZg3cDbF1gd5o_9FQKusCSfnD3d7N7txPsFuw-X_pvTRNcYywrAv-7BgzfJHPYtTQWHdGjasmVArhbT9hQ

70pW2B_nqYa9XaOAbzEjfb0OB_Hi1cln3xPZcTh8IeWLdag",

"token_type": "bearer",

"expires_in": 28800,

"scope": "openid user.profile.read"

}

At this point, merchant is guaranteed that the user identified by that particular information has
undergone successful authentication on Astropay, and with the provided information can create
a local session, therefore completing the SWA flow successfully.

4. Get user profile
If merchant doesn’t want or is unable to interpret contents of the id token, or want to get user
information later on, the user profile endpoint can be consumed easily to get user information.

GET ${baseUrl}/cas/oidc/profile
Authorization: Bearer <access_token>

Access token is used as authentication, and it must be attached as Bearer token on the
Authorization header of the HTTP GET Request.

Response is profile in JSON format and contains the following relevant fields:

Property Description Type



sub User id String

service Merchant service identification URL

auth_time The time the end user was authenticated, represented in Unix time
(seconds).

long

id User id String

client_id Merchant client_id String

attributes JSON node containing user attributes allowed by the current scope JSON

User name used for logging in in Astropay, which is Mobile phone number, is present on id or
sub properties, and the rest of the user information that Astropay knows about the user and the
Merchant is allowed to access given the current scope is present under the attributes JSON
node. Implementations should be flexible on accepting more fields here without breaking, since
more attributes can be added by Astropay without notice.

Example request:
This example is simplified, any assigned cookies should be included to avoid being routed
wrongly by load balances or blocked by security components.

GET /cas/oidc/profile HTTP/1.1
Host: idp-stg.astropay.com
Authorization: Bearer ACCESS_TOKEN

Example response:
{

"sub": "598 98287126",

"service": "https://localhost:9443/simple-web-app/openid_connect_login",

"auth_time": 1616093205,

"attributes": {

"category": "1",

"country": "UY",

"identity_status": "NONE",

"mobile_number": "598 98287126"

},

"id": "598 98287126",

"client_id": "client"

}



Environments
Sandbox:
Base url - https://idp-stg.astropay.com
Authorization endpoint - https://idp-stg.astropay.com/cas/oidc/authorize
Access token endpoint - https://idp-stg.astropay.com/cas/oidc/accessToken
User profile endpoint - https://idp-stg.astropay.com/cas/oidc/profile

Production:
Under Construction

Authorization Scopes
Every scope enables merchant to access certain user attributes and/or methods and musst be
used as described in the present document.

Scope Data Methods

user.profile.read first_name
last_name
country
document number
mobile_number
email
address
identity_status (kyc_status)
category (BRONZE, SILVER,etc.)

Future scopes

user.mobile.read mobile_number

user.email.read email

user.document.read document_number

user.purchase.history.r
ead

Purchase history for user

References and Useful Links
https://openid.net/connect/
https://openid.net/developers/libraries/
https://oauth.net/2/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://jwt.io/

https://idp-stg.astropay.com
https://idp-stg.astropay.com/cas/oidc/authorize
https://idp-stg.astropay.com/cas/oidc/accessToken
https://idp-stg.astropay.com/cas/oidc/profile
https://openid.net/connect/
https://openid.net/developers/libraries/
https://oauth.net/2/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections
https://jwt.io/

